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Abstract

We present a mixed vector finite element method for solving the time dependent coupled Ampere and Faraday laws

of Maxwell�s equations on unstructured hexahedral grids that employs high order discretization in both space and time.

The method is of arbitrary order accuracy in space and up to 4th order accurate in time, making it well suited for elec-

trically large problems where grid anisotropy and numerical dispersion have plagued other methods. In addition, the

method correctly models both the jump discontinuities and the divergence-free properties of the electric and magnetic

fields, is charge and energy conserving, conditionally stable, and free of spurious modes. Several computational exper-

iments are performed to demonstrate the accuracy, efficiency and benefits of the method.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Methods for solving the full vector form of the coupled first order Maxwell equations (or the Ampere
and Faraday laws) have been in existence since the original Yee scheme [1]. In the standard formulation,

the electric field is discretized over a point grid that is offset both spatially and temporally from a
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‘‘dual-grid’’ over which the magnetic field is discretized. The curl operator is approximated with a second

order central difference formula. The system is integrated in time via a second order ‘‘leap frog’’ update

method where field values at a current time step are calculated in terms of the field values at previous time

steps [1]. The method is conditionally stable and consistent, leading to second order convergence as the grid

is refined in space and time [2].
In addition, the Yee scheme has several desirable properties from a computational physics viewpoint,

namely: conservation of numerical charge and energy, proper modeling of field discontinuities, divergence

free fields and no spurious modes. The dual-grid formulation facilitates conservation of numerical charge;

at every interior primary node, the sum of the electric field components on the edges connected to that node

is zero, hence there is no net charge in the mesh interior. Likewise, at every dual node, the sum of the mag-

netic field components on the dual-edges connected to that node is zero. Since the dual-edges are the faces

of the primary grid, this implies a net zero flux through the primary faces and hence divergence free mag-

netic fields. Use of the second order accurate leap-frog method leads to conservation of numerical energy in
a time averaged sense. To account for open-region problems (e.g. the Sommerfeld radiation boundary con-

dition), several techniques have been developed such as the absorbing boundary condition (ABC) and the

perfectly matched layer (PML) [3,4]. The combination of these properties along with the method�s
efficiency, elegance and ease of implementation have established the FDTD as the benchmark method in

computational electromagnetics (CEM) to which all other methods are compared.

Despite these benefits, the method is certainly not without it limitations, and it is precisely these limita-

tions which have lead to the development of new, more advanced methods. The shortcomings of the FDTD

method are mainly twofold. The first is the restriction of the method to Cartesian grids (or those which can
be mapped to Cartesian grids). Objects with curved boundaries must be gridded in a ‘‘stair-step’’ manner

and it has been shown that such approximations can give very poor results [5,6]. In order to circumvent this

limitation, there have been several attempts to generalize the FDTD method to unstructured grids, includ-

ing the modified finite volume (MFV) technique [7,8] and the discrete surface integral (DSI) method [9].

However, a serious defect of these methods is the existence of late time growth of the solution amplitude

(often called a ‘‘late-time instability’’) for problems on non-orthogonal grids, irrespective of the time step

used. This instability is caused by the non-symmetric discretization of the curl–curl operator [10]. The use of

dissipative time integration schemes (e.g. artificial viscosity or filtering) can dampen the growth of this non-
physical solution, but this results in a violation of numerical charge and energy conservation.

The second limitation of the FDTD method is numerical dispersion. Numerical dispersion is the non-

physical dependence of computed wave propagation velocity on frequency; resulting in a cumulative

growth in global phase error for time-dependent problems (also called the pollution effect [11]). The con-

sequences of this purely numerical phenomenon are present in any grid based method; the goal therefore is

to reduce its effect as much as possible. This is typically accomplished by adding grid points to a mesh to

more fully resolve the spatial and temporal nature of an electromagnetic wave. However, for certain ‘‘elec-

trically large’’ problems in which several wavelengths span the computational domain or for certain broad-
band applications, it can become prohibitively expensive to achieve a prescribed tolerance for numerical

dispersion error using standard grid refinement. A more efficient way to reduce numerical dispersion is

to employ a higher order method. High-order spatial discretizations can yield extremely accurate and

efficient results for certain problems with smoothly curved boundaries, and they can drastically reduce

the effects of numerical dispersion [12–15]. Extensions of the FDTD method to higher order versions have

been published, such as the 4th order accurate methods of [16–19], however these methods were developed

for 2D orthogonal grids and often have difficulties maintaining accuracy at material interfaces and PEC

boundaries due to the high order finite difference stencils. Recent advances in the finite element method
have lead to more generalized high order implementations on unstructured grids, while eliminating the

presence of spurious-modes which are encountered whenever scalar (or nodal) basis functions are improp-

erly used to discretize the curl–curl operator [20,21]. These include the high order interpolatory vector basis
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functions of [22], the hp-adaptive frequency domain formulations of [23] and the time domain formulations

of [24]. In addition to these partially continuous finite element methods, the fully discontinuous Galerkin

(DG) method has proven very successful for time and frequency domain Maxwell equations including the

spectral penalty based nodal formulations of [25] and the locally divergence free DG methods of [26].

In this paper, we propose a high order mixed vector finite element method for solving Maxwell�s equa-
tions directly in the time domain. The method has several key benefits. High order spatial discretization is

achieved by employing the high order interpolatory basis functions of [27], derived from the Nédeléc poly-

nomial spaces [28]. These vector basis functions satisfy the properties of the recently proposed differential

forms based approach for constructing 1-form (also known as curl-conforming, H(Curl) or ‘‘edge’’) bases

and 2-form (also known as divergence-conforming, H(Div) or ‘‘face’’) bases [29]. For the Galerkin proce-

dure applied to either the frequency domain or time dependent Maxwell equations, there are significant

advantages to both 1-form and 2-form finite element basis functions [30]; including the proper modeling

of the jump discontinuity of field intensities and flux densities across material interfaces, the elimination
of spurious modes in eigenvalue computations and the conservation of charge in time-dependent simula-

tions [30]. High order temporal discretization is achieved via the symplectic integration methods of [31].

Symplectic methods have the benefit of conserving total electromagnetic field energy and are therefore pre-

ferred over dissipative methods (such as Runge–Kutta) in applications that require high-accuracy and en-

ergy conservation over long periods of time integration. Unlike DG methods which have the advantage of

being locally defined, the proposed mixed finite element method requires the assembly of a global linear

system and ensuring the orientation of shared entries in this global system for arbitrary order basis func-

tions can be problematic. As such, we also introduce a general permutation algorithm which ensures the
proper assembly of global linear systems for arbitrary order basis functions.

The structure of the paper is as follows. In Section 2 we introduce the precise form of the time dependent

PDEs we are concerned with. In Section 3 we present the variational formulation of the PDE and apply

Galerkin�s method to yield a linear system of ODEs. In Section 4 we present the key ingredients necessary

to discretize the problem in space, including the finite element basis functions, degrees of freedom (DOF),

bilinear forms and global assembly process. In Section 5 we explain the symplectic time integration process

used to numerically integrate the time dependent algebraic equations which are produced from the spatial

discretization process. We also discuss the nature of stability and numerical energy and charge conservation
of the method. In Section 7 we provide several computational examples ranging from simple resonant

cavity simulations to more complicated wave guide simulations which demonstrate the properties of the

proposed method. Finally, in Section 8 we conclude the paper.
2. The coupled Ampere–Faraday equations

We begin with the time dependent Ampere–Faraday equations which describe the spatial and temporal
evolution of the 1-form electric field intensity E and the 2-form magnetic flux density B, given by:
e
o

ot
E ¼ r� ðl�1BÞ � rE� J in X,

o

ot
B ¼ �r� E in X:

ð1Þ
We impose the physical restriction that there are no free electric or magnetic charges in the problem do-

main; and therefore, require only the presence of current (or voltage) sources, yielding the constraints:
r � ðeEÞ ¼ 0 in X,

r � B ¼ 0 in X:
ð2Þ
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In order to fully define the problem, the field variables are subject to the following initial-boundary values:
n̂� E ¼ Ebc on oX,

EðtÞ ¼ Eic at t ¼ t0,

BðtÞ ¼ Bic at t ¼ t0:

ð3Þ
The symbol X is a three dimensional domain in which the fields exist, oX is the two dimensional boundary

of the domain, n̂ is the outwardly directed unit normal of this boundary and J is a time and space dependent
2-form current flux density. The symbols e, l and r are the dielectric function, magnetic permeability and

electrical conductivity, respectively; describing the material properties of the medium in which the fields ex-

ist. These parameters are free to be tensor valued functions of space; however, we impose the restriction

that they are linear and independent of time which. The value Ebc represents an arbitrary boundary con-

dition imposed on the electric field intensity and can range anywhere from the simple case of a perfect elec-

tric conductor (PEC) to more complicated voltage sources or ABC. The values Eic and Bic represent the

initial conditions of the problem, and t0 is the initial time. Note that if the current source(s) described

by J are divergence free (implying conservation of charge), then the divergence constraints of (2) will be
satisfied for all time, provided that the initial condition data is divergence free.
3. Formulation of the method

3.1. Variational formulation

We now apply a variational formulation to the coupled first order field equations of (1). We begin by
computing the inner product of each term in the electric field intensity equation with a 1-form test function

E 0, and each term in the magnetic flux density equation with a 2-form test function B 0. The resulting equa-

tions are then integrated over a volume to yield:
Z
X
e
o

ot
E � E0 ¼

Z
X
r� 1

l
B

� �
� E0 �

Z
X
rE � E0 �

Z
X
J � E0,

Z
X

1

l
o

ot
B � B0 ¼ �

Z
X

1

l
r� E � B0:
Using integration by parts and the Stokes theorem yields the following linear functionals:
Z
X
e
o

ot
E � E0 ¼

Z
X

1

l
B � r � E0 �

Z
X
rE � E0 �

Z
X
J � E0 �

I
oX

1

l
B� E0

� �
� n̂, ð4Þ

Z
X

1

l
o

ot
B � B0 ¼ �

Z
X

1

l
r� E � B0: ð5Þ
These linear functionals are appropriate for use in a Galerkin finite element procedure.

Note that by using integration by parts and the Stokes theorem, it has been assumed that the field vari-

ables and their respective test functions have a certain amount of smoothness, namely that:
E 2 HðCurlÞ :
Z

eE � Eþ
Z
ðer� EÞ � ðr � EÞ <1

� �
, ð6Þ
X X
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B 2 HðDivÞ :
Z
X

1

l
B � Bþ

Z
X

1

l
r � B

� �
� ðr � BÞ <1

� �
: ð7Þ
The constraints of (6) and (7) have a very relevant physical interpretation for the case of Maxwell�s
equations. The first term in the constraints above states that the electric and magnetic field energies

must remain finite, while the second term in the constraints is a direct consequence of Ampere�s
law and Faraday�s law, implying that the time varying 2-form electric and magnetic flux densities must
be finite as well. There are further implications from the constraints of (6) and (7). Consider the sit-

uation of a material interface with a surface separating the two materials with differing dielectric con-

stants. In the absence of a surface charge density, Gauss� law implies that the normal component of

the electric flux density eE is continuous, therefore the normal component of electric field intensity E is

discontinuous. Conversely, Faraday�s Law implies that the tangential component of the electric field

intensity E is continuous, therefore the tangential component of the electric flux density eE is

discontinuous.
3.2. Spatially discretized PDE

In this paper, we use polynomial basis functions of arbitrary degree to discretize the function spaces

H(Curl) and H(Div). Let Rh be a piecewise discretization of the physical domain X of (1) using a mesh

of hexahedral elements of characteristic volume Dh. The field variables are then approximated over each

element R 2 Rh by basis function expansions of the form:
Eðr,tÞ �
X
i

eiðtÞwiðrÞ, wi 2 W h � HðCurlÞ, ð8Þ

Bðr,tÞ �
X
i

biðtÞf iðrÞ, f i 2 F h � HðDivÞ for r 2 R, t0 6 t 6 tfin, ð9Þ
where ei(t) are the time dependent 1-form degrees of freedom, bi(t) are the time dependent 2-form degrees of

freedom, wi(r) are the spatially dependent 1-form polynomial basis functions and fi(r) are the spatially

dependent 2-form polynomial basis functions.

Applying Galerkin�s method to the variational formulations of (4) and (5) yields the following linear sys-

tem of first order ordinary differential equations (ODEs):
M e
o

ot
e ¼ KTMlb�Mre�M ej,

o

ot
b ¼ �Ke,

ð10Þ
where e and b represent the discrete differential 1-form and 2-form electric and magnetic fields, respec-

tively, K is a rectangular matrix representing the discrete curl operator, Me is a symmetric positive

definite (SPD) 1-form mass matrix computed using the material property function e to represent the

dielectric properties, Mr is the SPD 1-form mass matrix computed using the material property func-
tion r to represent the electric conductivity, Ml is the SPD 2-form mass matrix computed using the

material property function l to represent the magnetic permeability and j is the discrete 2-form time

dependent current source. Note that if the material property functions are time dependent, then each

of these matrices will need to be computed at every discrete time step. In the next section, we will

present the key components necessary for constructing these matrices and vectors on unstructured

hexahedral meshes.
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4. High order spatial discretization

Here we present the key components for assembling the finite element matrices of (10) for arbitrary order

accuracy. We use the symbol p to denote the polynomial degree of a basis function. For a polynomial basis

of degree p, the discrete PDE of (10) will be p + 1 order accurate in space. We follow the work of Ciarlet [32]
and adhere to the strict mathematical definition of a finite element as a set of three distinct objects ðR,P,AÞ
such that:

� R is the polyhedral domain over which the element is defined;

� P is a finite dimensional polynomial space from which basis functions are constructed;

� A is a set of linear functionals (Degrees of Freedom) dual to P.

Separating the element R from the basis allows for curvilinear elements of arbitrary geometry order. Pre-
cise definitions for A are needed to define projection and interpolation operators. These are necessary for

applying boundary conditions and performing normed error analysis. To construct the local (or single ele-

ment) matrices, we present explicit bilinear forms. To assemble the local matrix results into a global linear

system in a conforming manner, we also present a global assembly process.

4.1. Polynomials

We use interpolatory polynomials as the building blocks for the high order vector basis functions used
in the formulation of (10). It is also possible to use hierarchical basis functions instead, such as those of

[33,34]. The Lagrange interpolatory polynomial of degree p is defined by a distinct set of p + 1 real valued

interpolation points denoted by the symbol X, such that X = {X0,X1, . . . ,Xp}. The polynomial is con-

structed in such a way that it has a value of unity at interpolation point i and a value of zero at every

other interpolation point. The precise definition for the Lagrange interpolatory polynomial of degree p

is given by
Lp
i ðx;X Þ ¼

Yp
j¼0
j 6¼i

ðx� X jÞ
ðX i � X jÞ

: ð11Þ
The set of p + 1 interpolation points, X, can at this point be arbitrary; however as show in [27], the use of

special non-uniform points based on the zeros of Chebyshev polynomials yield substantially improved con-

ditioning of finite element matrices in contrast to standard basis functions which use uniformly distributed
interpolation points.
4.2. R – Element topology and geometry

All hexahedral elements (including curved elements) in a physical mesh are topologically equivalent to

a reference hexahedral element. In order to make integration over the reference element as simple as pos-

sible, we adopt a standard Cartesian coordinate system with an origin at the point (0,0,0) as our reference

coordinate system. Throughout the remainder of this paper, all objects explicitly defined with respect to
this reference coordinate system will be accented with a hat symbol. Let R̂ denote the unit hexahedron

such that
R̂ ¼ fðr̂1,̂r2,̂r3Þ; 0 6 ðr̂1,̂r2,̂r3Þ 6 1g: ð12Þ

There exists a mapping U from the reference element R̂ to an actual mesh element R. This mapping (defined

by interpolatory shape functions) and its Jacobian are defined as
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r ¼ Uðr̂Þ; J i,j ¼
orj
or̂i

, ð13Þ
where r̂ 2 R̂ and r 2 R. For hexahedral elements, these shape functions can be constructed in a very effi-

cient manner using a tensor product of the Lagrange interpolatory polynomials. A mapping of order s

can be constructed as:
Uðr̂Þ ¼
Xðsþ1Þ3
i¼1

niNiðr̂Þ, ð14Þ

fNðr̂Þg ¼ fLs
i ðr̂1ÞLs

jðr̂2ÞLs
kðr̂3Þ; i,j,k ¼ 0, . . . ,sg, ð15Þ
where ni are the global coordinates of the (s + 1)3 vertices used to define the global hexahedron and the set

of interpolation points X (omitted for clarity) are uniformly distributed. The geometry order s is indepen-

dent of the basis order and it determines the degree of distortion of the global mesh element. For example a

mapping of order s = 1 implies a coordinate transformation to a linearly distorted element defined by the

global coordinates of 8 vertices, while a mapping of order s = 2 implies a transformation to a quadratically

distorted element defined by the global coordinates of 27 vertices.
4.3. P – Polynomial spaces and basis functions

In this section we present explicit formulae for the construction of high order interpolatory 1-form and

2-forms basis functions (or discrete differential forms). These basis functions are derived from the curl and

divergence conforming polynomial spaces originally proposed by Nédeléc [28].

For clarity, we will denote the three independent variables in the reference system using the standard

Cartesian notation of ðx̂,ŷ ,̂zÞ. In addition, we will denote contra-variant basis vectors as x̂,ŷ and ẑ, while

covariant basis vectors will be denoted as X̂,Ŷ and Ẑ. This is a trivial distinction since these basis vectors
are identical, have unit magnitude, and are constant over the domain of the reference hexahedron. How-

ever, we make the distinction to emphasize the different transformation properties of the bases associated

with these vectors. We also omit the interpolation points X from the Lagrange interpolatory polynomials,

implying that the set may be arbitrary; however, for improved matrix conditioning the extended Chebyshev

points of [27] should be used.
4.3.1. 1-Form basis functions

Let Ŵ h denote a 1-form basis on the reference element, with individual basis functions denoted as ŵi such

that ŵi 2 Ŵ h. In order to satisfy the locality property [29], we can break this set of basis functions into three

mutually disjoint subsets such that
Ŵ h ¼ Ŵ e [ Ŵ f [ Ŵ v, ð16Þ
where the subscripts e, f and v denote the edges, faces and volume of the reference element, respectively. For

1-forms, locality implies that the edge basis functions should have non-vanishing tangential components

along one and only one edge. The face basis functions will have non-vanishing tangential components along

one and only one face with no tangential components along any edges. Finally, the volume basis functions

will have no tangential components along either edges or faces. The 1-form edge basis functions of poly-
nomial degree p are given by:
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Ŵ e ¼

Lp
i ðŷÞLp

j ðẑÞLp�1
k ðx̂Þx̂,

Lp
i ðx̂ÞLp

j ðẑÞLp�1
k ðŷÞŷ,

Lp
i ðx̂ÞLp

j ðŷÞLp�1
k ðẑÞẑ,

8>>><
>>>:

i,j ¼ 0,p; k ¼ 0, . . . ,p � 1: ð17Þ
This set of functions is grouped into three sub-sets, one for each contravariant basis vector. The indices i

and j loop over the 4 edges that are tangent to these basis vectors. The index k loops over the p basis func-

tions per edge for a total of 12p. The 1-form face basis functions of polynomial degree p are given by:
Ŵ f ¼

Lp
i ðx̂ÞLp

j ðẑÞLp�1
k ðŷÞŷ,

Lp
i ðx̂ÞLp

j ðŷÞLp�1
k ðẑÞẑ,

Lp
i ðŷÞLp

j ð̂zÞLp�1
k ðx̂Þx̂,

Lp
i ðŷÞLp

j ðx̂ÞLp�1
k ðẑÞẑ,

Lp
i ð̂zÞLp

j ðŷÞLp�1
k ðx̂Þx̂,

Lp
i ð̂zÞLp

j ðx̂ÞLp�1
k ðŷÞŷ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

i ¼ 0,p; j ¼ 1, . . . ,p � 1; k ¼ 0, . . . ,p � 1: ð18Þ
This set of functions is grouped into six sub-sets, two for each face representing the contravariant basis vec-

tors that are in the plane of that face. The index i loops over the 2 faces that are coplanar to these basis
vectors. The indices j and k loop over the 2p(p � 1) basis functions per face for a total of 12p(p � 1).

Finally, there will be a total of 3p(p � 1)2 interpolatory basis functions that are internal to the reference

element given by:
Ŵ v ¼
Lp
i ðŷÞLp

j ðẑÞLp�1
k ðx̂Þx̂,

Lp
i ðx̂ÞLp

j ð̂zÞLp�1
k ðŷÞŷ,

Lp
i ðx̂ÞLp

j ðŷÞLp�1
k ðẑÞẑ,

8>><
>>: i,j ¼ 1, . . . ,p � 1; k ¼ 0, . . . ,p � 1 ð19Þ
4.3.2. 2-Form basis functions

Let F̂ h denote a 2-form basis on the reference element, with individual basis functions denoted as f̂ i such

that f̂ i 2 F̂ h. In order to satisfy the locality property, we can break this set of basis functions into two mutu-

ally disjoint subsets such that
F̂ h ¼ F̂ f [ F̂ v, ð20Þ

where the subscripts f and v denote the faces and volume of the reference element, respectively. For 2-forms,

locality implies that the face basis functions will have non-vanishing normal components along one and

only one face while the volume basis functions will have no normal components along any of the faces.

The interpolatory face basis functions of polynomial degree p are given by:
F̂ f ¼
Lp
i ðx̂ÞLp�1

j ðŷÞLp�1
k ð̂zÞX̂,

Lp
i ðŷÞLp�1

j ðx̂ÞLp�1
k ð̂zÞŶ,

Lp
i ðẑÞLp�1

j ðx̂ÞLp�1
k ðŷÞẐ,

8>><
>>: i ¼ 0,p; j,k ¼ 0, . . . ,p � 1: ð21Þ
This set of functions is grouped into three sub-sets, one for each of the covariant basis vectors. The index i

loops over the 2 faces that are normal to these basis vectors. The indices j and k loop over the p2 basis func-

tions per face for a total of 6p2. Finally, there will be a total of 3p2(p � 1) interpolatory basis functions that

are internal to the reference element given by:



Table 1

Transformation rules

Object Transformation rule Units

1-Form functions w � U ¼ J�1ŵ m�1

Curl of 1-form ðr � wÞ � U ¼ 1
jJ j J

Tðr � ŵÞ m�2

2-Form functions f � U ¼ 1
jJ j J

T f̂ m�2

Div of 2-form ðr � fÞ � U ¼ 1
jJ j ðr � f̂Þ m�3

F
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F̂ v ¼
Lp
i ðx̂ÞLp�1

j ðŷÞLp�1
k ðẑÞX̂,

Lp
i ðŷÞLp�1

j ðx̂ÞLp�1
k ðẑÞŶ,

Lp
i ðẑÞLp�1

j ðx̂ÞLp�1
k ðŷÞẐ,

8>><
>>: i ¼ 1, . . . ,p � 1; j,k ¼ 0, . . . ,p � 1: ð22Þ
4.3.3. Basis function transformation rules

The basis functions presented are defined with respect to the reference coordinate system. In order to

maintain coordinate independence, all properties of the functions defined in the reference coordinate system

must be preserved under a transformation to a new global coordinate system, this property is known as

invariance [29]. Table 1 gives the precise transformation rules for 1-forms and 2-forms, their respective exte-

rior derivatives and the units of these transformations; all of which can be derived using the calculus of dif-

ferential forms. The symbol m denotes an arbitrary metric of distance while the symbol � denotes
composition. Figs. 1 and 2 give some visual examples of these transformations applied to particular members

of the 1-form and 2-form bases of polynomial degree p = 1. Each of the basis functions are plotted over three

different elements corresponding to three different local to global mappings of geometry order s = 0 (i.e., the

reference element), s = 1 and s = 2. Note that our approach of defining all basis functions with respect to a

reference (or local) coordinate system and later transforming the results to global element coordinate sys-

tems as necessary is very different than the approach presented in [22] where all basis functions are explicitly

defined with respect to the barycentric coordinates of the global element. In Section 4.7 we show how our

approach can lead to a computationaly efficient method for constructing the global matrices of (10).

4.4. A – Degrees of freedom

In [28], a set of integral based degrees of freedom (DOF) are presented which are presumed to be com-

puted exactly. In practice, such DOF can be computationally expensive to implement and cannot always be
ig. 1. Examples of a 1-form basis function transformation for elements of geometry order s = 0, 1 and 2 (left to right).



Fig. 2. Examples of a 2-form basis function transformation for elements of geometry order s = 0, 1 and 2 (left to right).
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integrated exactly using numerical quadrature. As such, we present a set of discrete DOF that are based on

evaluation of a function at a point. These point based DOF satisfy the properties of invariance and locality

and given a set of basis functions, they can be used to enforce unisolvence. The following DOF will always

carry the physical units of the field that are not related to space (such as voltage, current, charge, etc.) and

will always be scale invariant.

Let X denote a set of p + 1 interpolation points over the unit interval [0,1] and X 0 denote a set of p inter-

polation points over the same interval. Furthermore, for the special case of p = 1, let X 0 = 1/2. Now con-

sider an arbitrary vector function g, the set of linear functionals that make up the 1-form point DOF
are given by:
A1ðgÞ ¼
gðUðX 0i,X j,X kÞÞ � JTx̂,

gðUðXk,X 0i,X jÞÞ � JTŷ,

gðUðX j,X k,X 0iÞÞ � JTẑ,

8><
>: i ¼ 0, . . . ,p � 1; j,k ¼ 0, . . . ,p, ð23Þ
where x̂,ŷ and ẑ denote the contravariant basis vectors on the reference element. The set of linear function-

als that make up the 2-form point DOF are given by:
A2ðgÞ ¼
gðUðX i,X 0j,X

0
kÞÞ � jJ jJ�1X̂,

gðUðX 0k,X i,X 0jÞÞ � jJ jJ�1Ŷ,
gðUðX 0j,X 0k,X iÞÞ � jJ jJ�1Ẑ,

8>><
>>: i ¼ 0, . . . ,p; j,k ¼ 0, . . . ,p � 1, ð24Þ
where X̂,Ŷ and Ẑ denote the covariant basis vectors on the reference element.

The unisolvence property for DOF requires that:
A1
i ðwjÞ ¼ di,j, wj 2 W h,

A2
i ðfjÞ ¼ di,j, fj 2 F h:

ð25Þ
This property must hold in order for basis function expansions of the form (8) to be valid. In order to en-

force unisolvence for a given basis (for example, the 1-form basis W), we first construct the matrix
V i,j ¼A1
i ðwjÞ: ð26Þ
This matrix forms a linear mapping that is similar to a Vandermonde matrix. Because the degrees of free-

dom are linear functionals, we can construct a new set of degrees of freedom, denoted ~A
1
, by the relation
~A
1 ¼ ðV �1ÞTA1: ð27Þ
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Note that by construction, the basis functions of (16) and (20) will satisfy the unisolvence property of (25)

(up to some permutation of the basis functions). The procedure of (27) is therefore trivial for this particular

case. However, this general procedure is valid for any proper set of basis functions including hierarchical

bases such as those of [33,34].
4.5. Validation of basis function expansions

Now let the operators P1 and P2 denote basis function expansions over an element R such that:
P1ðEÞ ¼
XdimðW hÞ

i¼1
A1

i ðEÞwi, ð28Þ

P2ðBÞ ¼
XdimðF hÞ

i¼1
A2

i ðBÞf i: ð29Þ
The error in basis function expansions of this form is such that [28]:
kE�P1ðEÞk 6 c1Dh
pjEj, ð30Þ

kB�P2ðBÞk 6 c2Dh
pjBj, ð31Þ
where c1 and c2 are scalar valued constants of proportionality, Dh is the characteristic size (or volume) of

the element and p is the polynomial degree of the basis functions.

To validate the 1-form basis functions of (16) we choose a vector valued test function that is ‘‘sufficiently

smooth’’, non-polynomial and has a well defined curl. Specifically, we choose
E ¼ fsinðzÞ, cosðxÞ, expðyÞg: ð32Þ

We then generate basis function expansions of this function and compute the error of these expansions

using the L2 volume norm: kEk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
RðE � EÞ

q
. Similarly, to validate the 2-form basis functions of (20)

we choose a vector valued test function that has a well defined divergence
B ¼ fsinðxÞ, cosðyÞ, expðzÞg: ð33Þ

Fig. 3 shows logarithmic plots of the error in the expansions of (32) and (33) using the 1-form and 2-form

basis functions of (16) and (20) for 4 levels of h-refinement and 6 levels of p-refinement.
4.6. Commuting diagram property

The commuting diagram property states
r�P1ðEÞ ¼ P2ðr � EÞ: ð34Þ

The integral degrees of freedom of [28] satisfy this property exactly, meaning that the relation (34) is

satisfied for any function E. The discrete point degrees of freedom of (23) and (24) satisfy this prop-

erty in a discrete sense, meaning that as we increase the polynomial degree of the basis function

expansion, the error in (34) converges to zero (using the L2 norm); the same result one would expect
when using numerical quadrature in the evaluation of the exact integral based DOF of [28]. Likewise,

if E 2Wh, the discrete point degrees of freedom satisfy (34) exactly. Fig. 4 gives an example of this

using the function of (32). This property has no effect on the error convergence of the finite element

solution of (1).
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4.7. Bilinear forms

In the Galerkin finite element procedure, we require bilinear forms to construct the system of linear

equations of (10). We consider the general bilinear form
M shg,hi ¼
Z
X
sg � h, ð35Þ
where g and h are vector functions and s is a symmetric positive definite (SPD) tensor function which can

represent material properties such as electric and magnetic permeabilities and conductivities.

4.7.1. Symmetric bilinear forms

Now consider the symmetric bilinear form using the 1-form basis functions of Section 4.3. Using the

properties of the local to global mapping (13), we re-write the bilinear form as follows:
2 3 4 5

100

Polynomial Degree

Fig. 4. Error in commuting diagram property using the discrete point degrees of freedom.
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M shwi,wji ¼
Z
X
swi � wj ¼

X
R2Rh

Z
R
swi � wj ¼

X
R2Rh

Z
R̂
ðswi � wjÞ � UjJ j

¼
X
R2Rh

Z
R̂
ðswi � UÞ � ðwj � UÞjJ j, ð36Þ
Eq. (36) shows that all calculations for the bilinear form can be performed on a standard reference

element R̂ by replacing the globally defined basis functions w with the appropriately transformed lo-
cally defined functions from Table 1. This gives rise to a very computationally efficient algorithm

for computing finite element approximations. For a given element topology and basis order,the basis

functions only need to be computed once. Then, for every element of the same topology in the mesh,

the results from the reference element can simply be mapped according to the transformation rules.

This can significantly reduce computational time and storage requirements for a typical finite element

computation.

Applying the transformation rules results in the following SPD bilinear form:
M shwi,wji ¼
Z
R̂
ððs � UÞJ�1ŵiÞ � ðJ�1ŵjÞjJ j: ð37Þ
The 1-form SPD mass matrix will have units of (or scale as) s m1. Likewise, for 2-forms, we have the

following SPD bilinear form
M shf i,fji ¼
Z
R̂
ðs � UÞ 1jJ j J

T f̂ i

� �
� 1

jJ j J
T f̂j

� �
jJ j: ð38Þ
The 2-form SPD mass matrix will scale as sm�1. These explicit bilinear forms can be used to assemble local
(or single element) mass matrices used in the construction of the global linear system of (10).
4.7.2. Discrete curl operator

The coupled variational formulations of (4) and (5) have terms involving both 1-form and 2-form func-

tions; and will therefore require a mixed bilinear form. We can construct a rectangular matrix which maps

discrete 1-forms to discrete 2-forms as follows:
T shwi,fji ¼
Z
R
ðsr� wiÞ � fj ¼ M shf i,fjiKi,j ð39Þ
resulting in a product of the 2-form mass matrix and a new matrix K which we refer to as the topological

derivative matrix. A topological derivative matrix for 1-forms and 2-forms is a discrete version of the curl

operator and is independent of the element geometry, i.e., it is an incidence map between the discrete dif-

ferential 1-form and 2-form degrees of freedom. Specifically, the topological derivative matrix is of the form
Ki,j ¼A2
i ðr � wjÞ, ð40Þ
where A2
i are the 2-form degrees of freedom from (24). In other words, we construct this matrix by pro-

jecting the curl of the 1-form basis functions from (16) onto the dual space of the 2-form degrees of free-

dom. Stated another way, we can write the curl of a 1-form as a linear combination of the 2-form basis

functions. The resulting rectangular matrix contains only topological information and is independent of

the mesh geometry (since the J terms cancel out). It will have a number of rows equal to the dimension

of the discrete 2-form basis and a number of columns equal to the dimension of the discrete 1-form basis.

For the case of first order basis functions (i.e., p = 1), this matrix is the edge–face topological incident map
commonly found in FDTD and FE methods, consisting of ±1�s and 0�s [35]. Eq. (40) is a generalization of

this notion to higher-order basis functions.
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4.8. Global assembly

When assembling the global linear system of (10), it is imperative that all elements which share an edge

or a face agree on the ordering and possibly direction of the basis vectors associated with that edge or face

(note that this is not an issue with DG methods). In this section, we provide a method for ensuring that any
two global elements which share an edge or face will agree on their orientation by introducing an orienta-

tion standard based on the global integer IDs of an element�s primary vertices (i.e., for a hexahedron, these

primary vertices are simply the 8 vertices that define the corners). Given this global standard, we demon-

strate how to re-orient local edges and faces on an element in order to comply with this global standard. In

this section, we will denote the global coordinate system using the generic variables (u,v,w).

4.8.1. Edge operations

Here we define the symmetry operations of an edge. Consider an arbitrary line segment (or edge) defined
by 2 generic integer IDs: e = {a,b}. We define the global u orientation for this edge to be from the smallest

integer ID to the largest integer ID. We now apply the global standard to a generic edge; there are only two

cases to consider:

� Case 1 – E: Edge remains unchanged (Identity Operation); Min(e) = a; e ´ {a,b}.

� Case 2 – !E: Edge is reversed; Min(e) = b; e ´ {b,a}.

At most, a local edge will have to be reversed during the global assembly process in order to comply with
the global standard.

4.8.2. Face operations

Here we define the symmetry operations of a face. Consider an arbitrary quadrilateral face defined by

four generic integer IDs: f = {a,b,c,d}. We define the global u orientation for this face to be from the small-

est integer ID to its smallest neighbor (in a cyclical sense). The global v orientation for this face is defined

from the smallest integer ID to its largest neighbor (in a cyclical sense). We now apply the global standard

to a generic face; there are 4 cases, each with 2 sub-cases, to consider for a total of 8 distinct possibilities:

� Case 1.1 – R0: Rotation of 0� (Identity Operation); Min(f) = a and MinNeighbor(a) = b; f ´ {a,b,c,d}.

� Case 1.2 – D2: Reflection about second diagonal; Min(f) = a and MinNeighbor(a) = d; f ´ {a,d,c,b}.

� Case 2.1 – R270: Rotation of 270�; Min(f) = b and MinNeighbor(b) = c; f ´ {b,c,d,a}.

� Case 2.2 – V: Reflection about vertical axis; Min(f) = b and MinNeighbor(b) = a; f ´ {b,a,d,c}.

� Case 3.1 – R180: Rotation of 180�; Min(f) = c and MinNeighbor(c) = d; f ´ {c,d,a,b}.

� Case 3.2 – D1: Reflection about first diagonal; Min(f) = c and MinNeighbor(c) = b; f´ {c,b,a,d}.

� Case 4.1 – R90: Rotation of 90�; Min(f) = d and MinNeighbor(d) = a; f ´ {d,a,b,c}.
� Case 4.2 – H: Reflection about horizontal axis; Min(f) = d and MinNeighbor(d) = c; f ´ {d,c,b,a}.

These possibilities represent the 8 different symmetry operations for a square, consisting of 4 rotations

and 4 reflections [36]. During the global assembly process, a local face may need to be rotated or reflected in

order to comply with the global standard. The edge and face symmetry operations are summarized in

Fig. 5.

4.8.3. Permutations

Having defined all of the possible edge and face operations, we can now describe a permutation process

for a single element. This process will take the global IDs of an arbitrary element and construct the local

edge and face connections according to whatever local standard has been adopted. It will then check each



Fig. 5. Symmetry operations for edges and faces.
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local edge and face against the global standard and apply the necessary edge and face operations to enforce

compliance. As an example, consider a 1-form interpolatory face basis of degree p = 3. In this case we will

have 12 basis functions per face, 6 tangent to the local u-direction and 6 tangent to the local v-direction.

Suppose two elements share a face designated by the 4 global integer IDs 2,5,8 and 11. Furthermore, sup-

pose that in the first element, the face has the local orientation f1 = {11,8,2,5} while in the second element it

has the local orientation f2 = {5,2,8,11}. If we apply our standard to this face then the global orientation
will be f = {2,5,11,8} where the IDs {2,5} define the local u-direction and the IDs {2,8} define the local

v-direction. In order to comply with this global standard we must apply a rotation of 180� to f1 and a ver-

tical reflection to f2. Fig. 6 gives a visual example of this process. If we label the local face basis functions

(using generic IDs) with respect to the global orientation as w = {a,b,c,d,e,f,g,h,i,j,k,l}, then the face basis

functions associated with the first element will be sorted as w1 ´ {�f,�e,�d,�c,�b,�a,�
l,�k,�j,�i,�h,�g} while the face basis functions associated with the second element will be sorted as

w2 ´ {�c,�b,�a,�f,�e,�d,j,k,l,g,h,i}. The negative sign indicates that the local basis vector has changed

sign as a result of the reorientation process.
5. High order temporal discretization

Having defined all of the necessary components for assembling the global linear system of ODEs of (10),

we are now ready to discuss numerical methods to integrate this system in time. We will also discuss the

nature of numerical energy and charge conservation.
Fig. 6. Permutation process applied to 1-form interpolatory face basis functions of polynomial degree p = 3. The global standard is

displayed in the middle.
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5.1. Time integration and numerical stability

To introduce the temporal discretization process, consider the second order leap-frog method applied to

(10) for the special case of r = 0 (i.e., no dissipation) and J = 0 (i.e., no source term). This results in the

following explicit update scheme:
en ¼ en�1 þ DtM�1e KTMlbn�1
2
,

bnþ1
2
¼ bn�1

2
� DtKen,
where Dt is the discrete time step. Rewriting this system in matrix form yields
en
bnþ1

2

" #
¼ I DtM�1e KTMl

�DtK I � Dt2KM�1e KTMl

" #
en�1
bn�1

2

" #
, ð41Þ
where I is the identity matrix. More generically, we can write the system as
en
bnþ1

2

" #
¼ Q

en�1
bn�1

2

" #
, ð42Þ
where the matrix Q is called the amplification matrix. Stability of the method requires that [37]
kQk2 6 1þOðDtÞ: ð43Þ

It can be shown that the amplification matrix Q of (41) is similar to the symmetric matrix
~Q ¼ I � AAT �A
AT I

" #
: ð44Þ
Furthermore, it can be shown that the eigenvectors of the similar amplification matrix ~Q form a complete

eigenbasis. Therefore, a necessary and sufficient condition for satisfying (43) is given by
qðQÞ 6 1, ð45Þ

where q(Q) denotes the spectral radius of the amplification matrix Q. Following a similar approach to that

of [30], it can be shown that a sufficient condition for satisfying (45) is given by the relation
Dt 6
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðKM�1e KTMlÞ
q : ð46Þ
Note that (46) is essentially a CFL condition for arbitrary order spatial discretization, stating that the sam-
pling frequency (determined by Dt) must be less than half the highest resonant frequency of the spatial dis-

cretization. The stability condition of (46) is valid for all values of p, the order of the polynomial basis

functions. However, as p is increased, the value of qðKM�1e KTMlÞ (and hence the highest resonant

frequency of the spatial discretization) will grow, thus requiring a smaller time step Dt.

5.2. Conservation of numerical energy

For an electromagnetic problem with no physical dissipation due to conductivity or ABC the total elec-
tromagnetic energy should remain constant. In this particular mixed finite element method the instanta-

neous energy is the numerical version of the total energy stored in the electric and magnetic fields. It is

computed as
~E ¼ eTM eeþ bTMlb: ð47Þ
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This is similar to the discrete energy measurement of [38], where the 1-form magnetic field intensity is used

instead of the 2-form magnetic flux density used in (47). Many time integration methods such as forward

Euler, backward Euler, Runge–Kutta, Adams–Bashforth, etc., are inherently dissipative and the energy as

measured by (47) is not conserved; given an initial condition the electromagnetic energy will decay

exponentially.
The dissipative properties of a finite difference time integration scheme are based on the norm of the

amplification matrix Q. There are three cases to consider:
kQk2
> 1, unstable,

¼ 1, neutrally stable ðnon-dissipativeÞ,
< 1, stable, dissipative:

8><
>:
When the eigenvalues of the amplification matrix all lie within the unit circle in the complex plane, the

method will be stable and dissipative. Non-dissipative methods have the additional property that the eigen-

values of the update matrix all lie on the unit circle in the complex plane, with additional constraints on the

eignevectors for stability [30]. As demonstrated in [31], symplectic integration methods satisfy
kQk2 ¼ 1þ Dtk cosðctÞ:

This implies that the numerical energy of (47) is conserved in a time average sense; i.e., it oscillates period-

ically about the exact value and the amplitude of this oscillation is determined by the discrete time step Dt
and the order of the integration method k.
6. Conservation of numerical charge

6.1. Magnetic charge

Consider the case of a source free, zero conductivity region. Magnetic charge will be conserved for all

time provided that
r � o

ot
B

� �
¼ �r � ðr � EÞ ¼ 0: ð48Þ
This is simply the divergence of Faraday�s law from (1), and based on the properties of the divergence oper-

ator, it is clear that this term will always be zero. Therefore, in order for the method to conserve magnetic

charge for all time, this property must be satisfied in a discrete sense. Expressing the magnetic and electric

fields as basis function expansions of arbitrary polynomial degree according to (8), we can write (48) in a
semi-discrete matrix form as
D
o

ot
b

� �
¼ �DKe,
where the rectangular matrix D is a discrete version of the divergence operator of the form

Di,j ¼A3
i ðr � fjÞ. This matrix is similar in construction to the discrete curl operator of (40), except now

it is an incidence map between 2-form and 3-form degrees of freedom (i.e., for first order basis functions,

this matrix is the standard face-cell topological incidence map). The discrete divergence matrix D is con-

structed by taking the divergence of the 2-form basis functions and the matrix K is simply a linear combi-

nation of the curl of 1-form basis functions. Because the Nédeléc polynomial spaces satisfy a discrete exact

sequence property, the following matrix relation will always hold true:
DK ¼ 0: ð49Þ
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Therefore, magnetic charge is exactly conserved (to machine precision) for all time at the semi-discrete

level. Eq. (49) implies that the discrete curl matrix K has the correct range space (i.e., the set of all solenoidal

functions). For the special case of lowest order basis functions (p = 1), this is equivalent to stating that the

sum of magnetic fluxes entering each element is zero.

6.2. Electric charge

Again, consider the case of a source free, zero conductivity region. Electric charge will be conserved for

all time provided that
r � e
o

ot
E

� �
¼ 0: ð50Þ
This is simply the divergence of Ampere�s law from (1). The discrete electric field is expressed as a

linear combination of 1-form basis functions of arbitrary polynomial degree according to (8). As such,

the element to element interfaces do not have normal continuity and the electric field is not divergence

free in the classical differential sense. Rather the field is divergence free only in the variational
sense. This is required to allow for discontinuity of normal components across material interfaces.

Introducing a scalar valued, piecewise continuous 0-form test function / 0, the variational form of

(50) is
Z
X
r � e

o

ot
E

� �
/0 ¼ �

Z
X
e
o

ot
E � r/0 þ

Z
oX

e
o

ot
E/0

� �
� n̂:
Since the electric field is not required to be divergence free on the external boundary, we choose / = 0 on oX
yielding the constraint
Z

X
e
o

ot
E � r/0 ¼ 0:
This is simply the variational form of Ampere�s law from (4) with the 1-form test function E 0 expressed as

the gradient of some scalar function / 0. Setting J = r = 0, we have
Z
X
e
o

ot
E � r/0 ¼

Z
X

1

l
B � r � ðr/0Þ:
Again, based on the properties of the curl operator, it is clear that the term $ · ($/ 0) will always be zero.
Therefore, in order for the method to conserve electric charge for all time, this property must be satisfied in

a discrete sense. This implies that the matrix relation
KG ¼ 0 ð51Þ
must hold, where the rectangular matrix G is a discrete version of the gradient operator of the form

Gi,j ¼A1
i ðr/jÞ. Again, this matrix is similar in construction to the discrete curl operator of (40), except

now it is an incidence map between 0-form and 1-form degrees of freedom (i.e., for first order basis func-

tions, this matrix is the standard node-edge topological incidence map). The discrete gradient matrix G is

constructed by taking the gradient of the 0-form basis functions and the matrix K is simply a linear com-

bination of the curl of 1-form basis functions. Again, because the Nédeléc polynomial spaces satisfy a dis-

crete exact sequence property, the matrix relation of (51) will always hold. Therefore, electric charge is

conserved (to machine precision) for all time at the semi-discrete level. Eq. (51) implies that the discrete curl

matrix K has the correct null space (i.e., the set of all irrotational functions). For the special case of lowest
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order basis functions (p = 1), this is equivalent to stating that the sum of the electric field at each mesh node

is exactly zero.

6.3. Higher order conservative methods

The leap-frog method of (41) is second order accurate in time. Higher order conservative methods

exist such as those of [39,40]; which were originally derived for Hamiltonian systems with applications

in astrophysics and molecular dynamics. In [31], these symplectic methods are applied to finite element

discretizations of Maxwell�s equations of the form (10) using a general symplectic algorithm. In Algo-

rithm Alogrithm 1, we present the inputs, procedure and outputs of the general high order symplectic

integration algorithm. In general, a method of order k will require k evaluations of the functions F

and G. Therefore, as the order of the method is increased the overall computational costs will increase

likewise. However, as shown in [31], higher order time integration methods can yield drastic improve-
ments in accuracy for roughly the same computational cost as standard low order methods. The order

of the method can be adjusted simply by providing the algorithm with a corresponding set of coeffi-

cients, a and b, each of length k. Table 2 lists exact values of the sets of coefficients for methods of

order 1–4, as originally computed by [39,40].

Applying the general high order symplectic algorithm to the ODEs of (10) is straightforward and results

in a generalized, high order update scheme of the form
Table

Sympl

Order

a1 = 1

Order

a1 = 1/

a2 = 1/

Order

a1 = 2/

a2 = �
a3 = 1

Order

a1 = (2

a2 = (1

a3 = (1

a4 = (2
enþ1
bnþ1

� �
¼

Yk
i¼1

Qi

 !
en
bn

� �
, ð52Þ
where k is the order of the symplectic integration method and the matrices Qi are of the form
Qi ¼
I biDtM

�1
e KTMl

�aiDtK I � aibiDt
2KM�1e KTMl

" #
: ð53Þ
2

ectic integration coefficients for methods of order 1–4

1

b1 = 1

2

2 b1 = 0

2 b2 = 1

3

3 b1 = 7/24

2/3 b2 = 3/4

b3 = �1/24

4

+ 21/3 + 2�1/3)/6 b1 = 0

� 21/3 � 2�1/3)/6 b2 = 1/(2 � 21/3)

� 21/3 � 2�1/3)/6 b3 = 1/(1 � 22/3)

+ 21/3 + 2�1/3)/6 b4 = 1/(2 � 21/3)
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input : k, the order of the method F(b,t) and G(e), two functions

a and b, two sets of coefficients F0 and G0, the initial conditions

t0 and tfin, initial and final time Dt, the time step to use

output : efin and bfin, the fields at time tfin

Compute the number of time steps:

nstep ¼ tfin�t0
Dt

Set initial conditions:

e1 F0

b1 G0

Begin loop over time steps:

for i = 1 to nstep do

Begin integration method update:
ein ei
bin bi
for j = 1 to k do

Compute the update time for this step:

tj ¼ iDt þ
Pj�1

n¼1anDt
Update the field values:

eout = ein + bjDtF(bin,tj)
bout = bin + ajDtG(eout)
ein eout
bin bout

end

Update field values for this time step:

ei + 1 eout
bi + 1 bout

end

efin enstep + 1

bfin bnstep + 1

Algorithm 1. General Symplectic Integration Algorithm

This results in a system amplification matrix Q that is a product of the Qi. For example, the third

order symplectic integration method from Table 2 (k = 3) applied to (10) can be written in matrix
form as
enþ1
bnþ1

� �
¼ Q3Q2Q1

en
bn

� �
:

It can be shown that each of the Qi are similar to a symmetric matrix whose eigenvectors form a complete

eigenbasis. Therefore, a sufficient condition for stability of the general high order symplectic update method

is
qðQiÞ 6 1; i ¼ 1, . . . ,k: ð54Þ

This in turn leads to the generalized stability condition for the high order symplectic integration method
Dt 6
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðaib KM�1KTMlÞ
q ; i ¼ 1, . . . ,k: ð55Þ
i e
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7. Computational examples

7.1. Time domain resonant cavity analysis

In these experiments, we compute the resonant modes of two different cavity geometries by directly
solving the time dependent PDE of (1) subject to a PEC boundary condition. We begin by creating

an oscillating electromagnetic field inside the cavity by applying a time dependent, vector valued current

source to a random sampling of the interior DOF of the spatially discretized PDE of (10). The simple

current source has a temporal profile equal to the first derivative of a Gaussian pulse. In addition, the

pulse is randomly oriented each time it is applied to a degree of freedom; this is done to ensure that

all of the modes of the cavity are excited. We then discretize this problem in time using the general sym-

plectic algorithm of Alogrithm 1 and use a standard inverse power method to compute the largest stable

time step as dictated by the stability condition of (46). A diagonally scaled conjugate gradient algorithm
is used to solve the mass matrix at every time step to a residual error tolerance of 10�8. Setting the speed

of light equal to unity, we let the simulation run for a physical time of 200 s. Upon completion, we ex-

tract the time dependent values from the discrete 1-from solution vector, a discrete version of the voltage,

and Fourier transform the result to obtain both the transverse electric (TE) and transverse magnetic

(TM) resonant modes of the cavity. We then compare the computed modes with their known exact

values.
7.1.1. Cubic cavity

We begin with the simple cavity geometry of a unit cube. The computational mesh for this problem con-

sists of a relatively coarse 8 · 8 · 8 series of hexahedral elements. The exact TE and TM resonant modes for

a cube of this geometry are given by [41]
Table

Summ

Numb

Avera

Abs. e

Abs. e

Abs. e
fl,m,n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðl2 þ m2 þ n2Þ

q
for l,m ¼ 1, . . . ; n ¼ 0, . . . ð56Þ
The longer the simulation is run in time, the more accurately we can resolve the peaks of the resulting Fou-

rier spectrum; we choose a physical time of 200 s which yields reasonably sharp ‘‘spikes’’ in the frequency

domain.

In Table 3 we summarize the results of three different resonant cavity calculations on an orthogonal

mesh (see Fig. 7), using basis functions of polynomial degree p = 1,2 and 3 and a symplectic integrator

of order k = 1. In Table 4 we summarize the results of four different resonant cavity calculations on a

non-orthogonal ‘‘chevron’’ mesh (see Fig. 7). In Figs. 8 and 9 we show the computed Fourier spectrum
for the first 27 resonant frequencies of the cavity using the chevron mesh. The vertical lines in these plots

represent the locations of the exact resonant modes. Note that the vertical scale of these plots is essentially

irrelevant, the height of each peak is simply a relative measure of how much this particular mode was exited

by the random sampling process. Note that for the p = 1 case, the computed high-frequency modes are
3

ary of cubic cavity results using an orthogonal mesh

p = 1 p = 2 p = 3

er of unknowns 1194 13,872 45,000

ge number of PCG iterations/step 20 24 25

rror in 5th mode 3.7279e � 2 1.0391e � 3 1.0529e � 4

rror in 15th mode 1.9809e � 1 8.5000e � 3 4.8903e � 4

rror in 25th mode 3.6144e � 1 2.2692e � 2 2.4745e � 3



Fig. 7. Orthogonal and chevron cubic meshes.

Table 4

Summary of cubic cavity results using a non-orthogonal chevron mesh

p = 1 p = 2 p = 3 p = 3, k = 3

Number of unknowns 1194 13,872 45,000 45,000

Average number of PCG iterations/step 26 31 29 29

Abs. error in 5th mode 5.2538e � 2 1.0391e � 3 1.0529e � 4 6.1035e � 5

Abs. error in 15th mode 1.3439e � 1 1.0026e � 2 2.0149e � 3 1.0756e � 4

Abs. error in 25th mode 2.9439e � 1 1.5063e � 2 4.3819e � 3 1.8572e � 4
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Fig. 8. Computed resonant modes of cubic cavity using basis functions of degree p = 1 and symplectic integrator of order k = 1 on a

chevron mesh.
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drastically ‘‘up-shifted,’’ falling far short of their exact values. This is due to the coarse nature of the mesh

and the low order of approximation. As shown in Tables 3 and 4, the computed error in all of the cases

increases as the frequency of the mode increases. However, the higher order methods yield a much slower

rate of growth with an overall error that is orders of magnitude smaller than the standard p = 1 method.
Furthermore, using a high order k = 3 symplectic integrator in conjunction with a high order spatial
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Fig. 9. Computed resonant modes of cubic cavity using basis functions of degree p = 3 and symplectic integrator of order k = 3 on a

chevron mesh.
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discretization can yield even greater reductions in error as shown in Table 4. Note that the error conver-

gence properties of the method are essentially the same for the orthogonal and chevron meshes; however,

there is a slight increase in PCG iterations for the chevron mesh. In addition to this, it is important to note

that for all of cases presented, there are no ‘‘spurious’’ modes (i.e., non-physical resonant modes) or late
time instabilities.

7.1.2. Spherical cavity

In this experiment we compute the resonant modes of a spherical cavity using two different meshes: a

very fine mesh (Fig. 10) with a relatively small Dh value and a very coarse mesh (Fig. 11) with a large

Dh value. The fine mesh will use standard first order geometry elements (s = 1) while the coarse mesh will

make use of curved surface elements (s = 2). Use of curved elements on the surface allow the mesh to be

very coarse while still accurately modeling the geometric properties of the spherical surface.
Figs. 12 and 13 show the results of two separate calculations, one demonstrating h-Refinement using a

discrete basis of polynomial degree p = 1 on the fine mesh and the other demonstrating p-Refinement using
Fig. 10. Cross section of h-refined spherical mesh.



Fig. 11. Cross section of coarse spherical mesh with curvilinear surface elements.
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Fig. 12. Computed resonant modes of spherical cavity using h-Refinement.
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Fig. 13. Computed resonant modes of spherical cavity using p-Refinement.
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a discrete basis of polynomial degree p = 3 on the very coarse mesh with curvilinear surface elements. The

results of these two calculations are summarized in Table 5. Qualitatively speaking, both simulations yield

the same results; however, the computational costs are strikingly different. For example, to achieve a



Table 5

Comparison of computational cost for h-Refinement and p-Refinement

h-Refinement p-Refinement

Physical time 200 s 200 s

Error tolerance for 1st mode 1e � 3 1e � 3

Abs. error in 1st mode 7.167e � 4 4.431e � 4

Number of elements 28,672 32

Number of unknowns 87,632 2832

Number of nonzeros 2,849,360 615,888

Fill ratio 0.0371% 7.679%

Largest stable time step 0.007 s 0.03 s

Number of steps 28,572 6668

Average CPU time/step 1.00649 s 0.100927 s

Total run time 479.3 min 11.2 min
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prescribed error tolerance of 10�3 in the first computed mode, using a p-Refinement method runs 42 times

faster than a corresponding h-Refinement method.
7.2. Guided wave analysis

In these computational examples we simulate the propagation of an EM wave in two different guiding

structures: a coaxial cable and a single mode optical fiber. In addition, we investigate the numerical disper-
sion properties of the method via example. It is well known that higher order methods are better at reducing

the effects of numerical dispersion over standard first order h-refined methods [12–15]. For the specific case

of the second order accurate leap frog method applied to time domain vector finite element solutions of

Maxwell�s equations (with the free space speed of light scaled to unity), the discrete dispersion relation is

of the form [42]
x2 ¼ 2p
k

� �2

1þO
Dh
k

� �2p
 !

þO
Dt
k

� �2
 ! !

, ð57Þ
where k is the characteristic wavelength of the EM wave, x is the characteristic frequency and p is polyno-

mial degree of the finite element basis functions. Thus, for a given characteristic element size Dh, an increase

in the value p will reduce the numerical dispersion error more than a corresponding level of h-refinement

(i.e., for hexahedral elements: Dh 7! 1
8
Dh).
7.2.1. Coaxial waveguide

In this example we simulate the propagation of an EM wave along a coaxial waveguide. The problem is

excited with a time dependent voltage source boundary condition applied to the input cap of the mesh. The

voltage source has a temporal profile equal to a sine wave function and a spatial profile proportional to the

inverse of the radial coordinate. A PEC boundary condition is applied to the inner and outer cylindrical

walls while an ABC is applied to the end cap of the mesh. An analytic (or exact) solution to this problem

exists and is simply the value of the time and space dependent voltage source at the input boundary eval-
uated at the retarded time t 0 = t � c/z, where c is the speed of light in the guide and z is the propagation

direction. This allows for a normed error analysis of the method, thus providing quantitative insight into

the dispersion properties of the method on a non-orthogonal mesh. Scaling the speed of light equal to unity,

we set the characteristic frequency of the voltage source to f = 0.1 (or k = 10) while the mesh has a length of



Fig. 14. Fine and coarse coaxial waveguide meshes.
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100 units. This implies that at time t = 100, there will be exactly 10 full wavelengths in the coaxial mesh.

Due to numerical dispersion, the computed solution will gradually get out of phase with the exact solution.

Fig. 14 shows two meshes of the coaxial waveguide, a fine mesh (Dh) with 15,840 elements and a coarse

mesh (8Dh) with 1980 elements. The fine mesh is designed such that there are 10 transverse elements per

wavelength (a commonly used heuristic for low order methods). Fig. 15 shows a magnitude plot of the com-

puted electric field along with a sliced vector plot of the computed magnetic field. In Fig. 16 we plot the

maximum computed error as a function of the discrete time step for two different simulations: one using

first order (p = 1) basis functions on the fine mesh and the other using second order (p = 2) basis functions
on the coarse mesh with curvilinear surface elements (s = 2) on the inner and outer cylindrical walls. Each

computation has a total of 51,820 electric field unknowns and uses a discrete time step of Dt = 0.1. The er-

ror in the approximate electric field, d = E � Eh, is computed for each element in the mesh using the L2 vol-

ume norm. Note that in both cases, the maximum global phase error due to numerical dispersion increases

as a function of time, but the p-refined simulation yields a much slower rate of growth. It should be noted

that, although each computation has the same number of field unknowns, the matrices for the p = 2 case are

significantly more dense than the p = 1 case, so CPU time and storage will increase accordingly.
Fig. 15. Example of the computed electric and magnetic fields for the coaxial waveguide simulation.
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Fig. 16. Maximum phase error at each time step for coaxial waveguide simulation.
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In Fig. 17 we plot the base 10 log of the computed error as a function of propagation distance along the

coarse mesh at a fixed time value of t = 100 (i.e., the time required for the wave to traverse the full length of

the guide). We do this for four cases with a fixed Dt = 0.1 as summarized in Table 6. Again, note that as p is

increased, the maximum value and the growth rate of the phase error due to numerical dispersion is dras-

tically decreased. In is interesting to point out that for the p = 1 case, the phase error begins to decrease at

around z = 70; this is because the computed wave is now a full 180� out of phase with the exact wave. Also
note that when the high order k = 3 symplectic integrator is used in conjunction with the high order spatial

discretization, there is a significant decrease in the global error at the cost of 3 linear solves per time step.
0 10 20 30 40 50 60 70 80 90 100 110

0
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linear fit
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Fig. 17. Base 10 log of computed phase error vs. propagation distance at fixed time for coaxial waveguide simulation.



Table 6

Summary of coaxial waveguide computations for fixed Dh and Dt

Number of E unknowns Number of B unknowns Number of solves/step

p = 1, s = 1, k = 1 6950 6410 1

p = 2, s = 2, k = 1 51,300 49,160 1

p = 3, s = 2, k = 1 158,508 143,118 1

p = 3, s = 2, k = 3 158,508 143,118 3
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7.2.2. Fiber optic waveguide

In this example we simulate the propagation of a TE01 mode along a 100 lm section of a single mode

optical fiber using third order (p = 3) basis functions and curvilinear surface elements (s = 2) at the core and

cladding surfaces. The core has a radius of 5 lm while the cladding has a radius of 25 lm. The core index of

refraction is 1.471 while the cladding index is 1.456. With these properties, the fiber is capable of propagat-

ing a 1550 nm optical wave. The problem is excited with a space and time dependent pulsed voltage source

boundary condition applied to the input cap of the mesh. The spatial dependence of the voltage source is
Fig. 18. Spatial and temporal profile of pulsed voltage source used to excite fiber optic simulation.

Fig. 19. Snapshot of electric field magnitude at t = 0.187 ps in straight fiber optic simulation.
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derived from Bessel functions of the first and second kind with the appropriate transverse propagation con-

stants to satisfy continuity across the core/cladding interface while the temporal profile is a pulsed sine wave

containing 20 wavelengths as shown in Fig. 18. A PEC boundary condition is applied to the outer cladding

surface while an ABC is applied to the end cap of the mesh.

Use of p = 3 basis functions and s = 2 curvilinear surface elements permits the use of a relatively coarse
mesh, namely 1 transverse element per wavelength instead of the usual 10 transverse elements for a stan-

dard low order method. For this simulation, the fiber optic mesh consists of only 8208 elements. Standard

cell-centered visualization methods for the fields result in a very coarse representation on such a mesh. Fig.

19 shows a magnitude plot of the electric field vector at time step t = 0.187 ps sampled at 25 points per ele-

ment, indicating the high degree of field resolution within in each element using high order basis functions.
8. Conclusions

We have presented a high order mixed vector finite element method suitable for discretizing the time

dependent Maxwell equations on unstructured grids that is of arbitrary order accuracy in space and up to

4th order accurate in time. The method is charge and energy conserving, conditionally stable and able to

maintain the proper element to element continuities for the discrete electric and magnetic fields. For clarity

and brevity, this work was presented for Hexahedral elements; however, many of the results of this paper can

be applied to elements of other topologies (e.g. prisms, tetrahedrons, etc.). We have demonstrated via com-

putational example the benefits of the proposed method including the improved reduction of numerical dis-
persion error for electrically large problems. It has been shown that for problems with smooth solutions, the

proposed high ordermethod yields very accurate results in comparison to standard low ordermethods, some-

times at a reduction in overall computational cost. For problems with non smooth solutions (e.g. problems

with singularities due to physical geometry), high order methods are known to break down in the vicinity of

the field singularity and standard h-refined methods (or adaptive methods such as those of [23]) are preferred.
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